Novel Tissue‐Specific Mechanism of Regulation of Angiogenesis and Cancer Growth in Response to Hyperglycemia
نویسندگان
چکیده
BACKGROUND Hyperglycemia is an independent risk factor for the development of vascular diabetic complications, which are characterized by endothelial dysfunction and tissue-specific aberrant angiogenesis. Tumor growth is also dependent on angiogenesis. Diabetes affects several cancers in a tissue-specific way. For example, it positively correlates with the incidence of breast cancer but negatively correlates with the incidence of prostate cancer. The tissue-specific molecular mechanisms activated by hyperglycemia that control angiogenesis are unknown. Here we describe a novel tissue- and cell-specific molecular pathway that is activated by high glucose and regulates angiogenesis. METHODS AND RESULTS We have identified microRNA 467 (miR-467) as a translational suppressor of thrombospondin-1 (TSP-1), a potent antiangiogenic protein that is implicated in the pathogenesis of several diabetic complications. miR-467 was upregulated by hyperglycemia in a tissue-specific manner. It was induced by high glucose in microvascular endothelial cells and in breast cancer cells, where it suppressed the production of TSP-1 by sequestering mRNA in the nonpolysomal fraction. Mutation of the miR-467 binding site in TSP-1 3' UTR or miR-467 inhibitor relieved the translational silencing and restored TSP-1 production. In in vivo angiogenesis models, miR-467 promoted the growth of blood vessels, and TSP-1 was the main mediator of this effect. Breast cancer tumors showed increased growth in hyperglycemic mice and expressed higher levels of miR-467. The antagonist of miR-467 prevented the hyperglycemia-induced tumor growth. CONCLUSIONS Our results demonstrate that miR-467 is implicated in the control of angiogenesis in response to high glucose, which makes it an attractive tissue-specific potential target for therapeutic regulation of aberrant angiogenesis and cancer growth in diabetes.
منابع مشابه
Changing Roles of Matrix Metalloproteases and Their Inhibitors, TIMPs, During Tumor Progression and Angiogenesis
Inhibition of matrix-metalloproteinases (MMPs) by tissue inhibitors of metalloproteinases (TIMPs) has been shown in vivo to decrease metastasis and tumor-associated angiogenesis. Our laboratory is interested in understanding the role of these proteins at the pericellular microenvironment of tumor and endothelial cells. Secretion of MMPs by tumor cells enables the migration, invasion and metasta...
متن کاملQuinazoline derivative compound (11d) as a novel angiogenesis inhibitor inhibiting VEGFR2 and blocking VEGFR2-mediated Akt/mTOR /p70s6k signaling pathway
Objective(s): We previously reported a series of quinazoline derivatives as vascular-targeting anticancer agents. In this study, we investigated the mechanism underlying the anti-angiogenic activity of the quinazoline derivative compound 11d. Materials and Methods: We examined the effects of quinazoline derivative 11d on vascular endothelial growth factor receptor-2 (VEGFR2) activation via VEG...
متن کاملExosomes: Mediators of Immune Regulation
Extracellular Vesicles, including exosomes, are small membrane fragments released from many cell types, like Mesenchymal Stem Cells (MSCs). They were recognized as a mechanism of intercellular communication. They can transfer proteins, lipids and nucleic acids to other cells. Thus, they have many physiological (angiogenesis, coagulation and tissue repair, etc.) and pathological (e.g. in autoimm...
متن کاملفاکتور القا شونده بهوسیله هیپوکسی: نقش آن در آنژیوژنز و سرطان
Angiogenesis, as the process of new vessel formation from pre-existing vessels is dependent on a delicate equilibrium between endogenous angiogenic and antiangiogenic factors. However, under pathological conditions, this tight regulation becomes lost which can result in the formation of the different diseases such as cancer. Angiogenesis is a complex process that includes many gene products tha...
متن کاملPhysiological role of adenosine and its receptors in tissue hypoxia-induced
It is well known that the metabolic factors play an important role in the regulation of angiogenesis. Increased metabolic activity leads to decreased oxygen levels and causes tissue hypoxia. Hypoxia starts different signals to stimulate angiogenesis and promotes oxygen delivery to tissues. It has been suggested that released adenosine from hypoxic tissues plays a vital role in angiogenesis. ...
متن کامل